

Faculty of Electrical and Electronics Engineering

Programme: Biomedical Engineering

Programme Level: Undergraduate

Syllabus

1. Course name: Signals and Systems

2. Course code: SISY330164

3. Credits: 3 credits (3:0:8) (3 lecture periods, 0 lab period, 6 self-study periods per week)

4. Instructors

a. Chief lecturer: MEng. Lê Minh Thành

b. Co-lecturers: MEng. Đặng Phước Hải Trang

c. Co-lecturers: Assoc. Prof. Phan Văn Ca

5. Course Requirements:

Prerequisite course(s): None Previous course(s): Calculus 1

6. Course Description

This course provides fundamental knowledge and application about the continuous time signasl and systems and applications. Topics include communication, continuous -time LTI signals and systems, difference equations, The Laplace Transform and convolution to Continuous-Time System Analysis, Continuous Time Fourier Series(CTFS), Continuous Time Fourier Transform (CTFT), modulation and demodulation system classification and filter system.

7. Learning Outcomes (CLOs)

CLOs	Descriptions On successful completion of this course students will be able to:	ELO(s) /PI(s)	Competency
CLO1	An ability to classify signals and systems, to describe the differences between continuous time signals and systems versus discrete time signals and systems, to determine the signal energy and correlation.	ELO1/PI1.1- 2	R
CLO2	An ability to determine the response of a linear time-invariant (LTI) system to any input signal by using the convelution in time-domain.	ELO1/PI1.1-	R
CLO3	An ability to apply the properties of Fourier transform, Laplace transform and other basis methods to mathematically transform signals between the time and frequency domains	ELO1/PI1.1- 2	R
CLO4	An ability to determine the response of a linear time-invariant (LTI) system to any input signal by using Fourier transform and inverse Fourier transform in frequency domain, to design the signal filter and modulation.	ELO1/PI1.1- 2 ELO7/PI7.2	I

8. Content outline

- Introduction of the continuous time signal and system'
- Time domain analysis of continuous time signal;
- Reponse of LTI system in time domain;
- The Laplace Transform and its applications;
- Frequency Domain Analysis of continuous Time Systems;
- Reponse of LTI system in time domain;
- Modulation demodulation system, filter system;

9. Teaching Methods

- Powerpoint presentation)
- Teamwork

10. Assessment(s)

Grading scale: 10Assessment plan:

No.	Content	CLOs	Compe- tency	Assessment methods	Assessment tools	Weighting %	
Formative assessment							
1	Problems in Signals and systems classification, signal engergy and power, signals correlation	CLO1	3	Midterm Test	Score sheet	15	
2	Problems in sytems impulse response and convolution implementation in time domain	CLO2	3	Midterm Test	Score sheet	15	
3	Attendance Quiz	CLO1- 4	3	Quiz Test	Score sheet	5	
4	Problems in sytems response by using Fourier transform in frequency domain	CLO3,4	3	Midterm Test	Score sheet	15	
Summative assessment						50	
5	Problems in signals and system analysis in time and frequency domains.	CLO1-	3	Final Examination	Score sheet	50	

11. Learning Materials

a. Textbook:

Richard Baraniuk, Signals & Systems, Richard Baraniuk, 2008.

b. References:

- 1. Hwei P. Hsu, Schaum's Outlines of Signals & Systems, The McGraw-Hill Companies, 2009.
- 2. Pham Thi Cư, Lý thuyết tín Hiêu, Nhà Xuất bản Giáo Duc, 2000.

12. General Information

Academic Integrity

All students in this class are subject to HCMUTE's Academic Integrity Policy (http://sao.hcmute.edu.vn/) and should acquaint themselves with its content and requirements, including a strict prohibition against plagiarism. Any violations will be reported to the Faculty of Electrical and Electronic Engineering Dean's office.

Flexibility Notice

Any information in this syllabus (other than grading and absence policies) may be subject to change with reasonable advanced notice. Students need to regularly update the information of their registered class.

Intellectual Property

All contents of these lectures, including written materials distributed to the class, are under copyright protection from the HCMUTE's Intellectual Property Regulations. Notes based on these materials may not be sold or commercialized without the express permission of the instructor.

13. Approval Date: <*dd/mm/yyyy>*

14. Endorsement:

Dean	Head of Department	Chief Lecturer
------	--------------------	----------------

Assoc. Prof. Dr. Nguyen Minh Tam	Assoc. Prof. Dr. Phan Văn Ca	<full name=""></full>
-------------------------------------	------------------------------	-----------------------

15. Revision History:

1 st Revision: <dd mm="" yyyy=""></dd>	Lecturer:
	Head of Department: Assoc. Prof. Phan Văn Ca
2nd Revision : < <i>dd/mm/yyyy></i>	Lecturer:
	Head of Department: